$T_0$ GRAPHS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computable Separation in Topology, from T_0 to T_3

This article continues the study of computable elementary topology started in [7]. We introduce a number of computable versions of the topological T0 to T3 separation axioms and solve their logical relation completely. In particular, it turns out that computable T1 is equivalent to computable T2. The strongest axiom SCT3 is used in [2] to construct a computable metric.

متن کامل

Solis Graphs and Uniquely Metric Basis Graphs

A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...

متن کامل

Effect of pair breaking on mesoscopic persistent currents well above the superconducting transition temperature.

We consider the mesoscopic normal persistent current (PC) in a very low-temperature superconductor with a bare transition temperature T_0(c) much smaller than the Thouless energy E(c). We show that in a rather broad range of pair-breaking strength, T_0(c) < or = Planck's/tau(s)< or =E(c), the transition temperature is renormalized to zero, but the PC is hardly affected. This may provide an expl...

متن کامل

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

متن کامل

On Barycentric-Magic Graphs

Let $A$ be an abelian group. A graph $G=(V,E)$ is said to be $A$-barycentric-magic if there exists a labeling $l:E(G)longrightarrow Asetminuslbrace{0}rbrace$ such that the induced vertex set labeling $l^{+}:V(G)longrightarrow A$ defined by $l^{+}(v)=sum_{uvin E(G)}l(uv)$ is a constant map and also satisfies that $l^{+}(v)=deg(v)l(u_{v}v)$ for all $v in V$, and for some vertex $u_{v}$ adjacent t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Apllied Mathematics

سال: 2016

ISSN: 1311-1728,1314-8060

DOI: 10.12732/ijam.v29i1.11